
Noise of Embedded High Aspect Ratio Nozzles 

•! A family of high aspect ratio nozzles were designed to provide a parametric database of canonical embedded propulsion 
concepts. Nozzle throat geometries with aspect ratios of 2:1, 4:1, and 8:1 were chosen, all with convergent nozzle areas. 
The transition from the typical round duct to the rectangular nozzle was designed very carefully to produce a flow at the 
nozzle exit that was uniform and free from swirl. Once the basic rectangular nozzles were designed, external features 
common to embedded propulsion systems were added: extended lower lip (a.k.a. bevel, aft deck), differing sidewalls, 
and chevrons. For the latter detailed Reynolds-averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) 
simulations were made to predict the thrust performance and to optimize parameters such as bevel length, and chevron 
penetration and azimuthal curvature. Seventeen of these nozzles were fabricated at a scale providing a 2.13 inch 
diameter equivalent area throat."

•! The seventeen nozzles were tested for far-field noise and a few data were presented here on the effect of aspect ratio, 
bevel length, and chevron count and penetration. The sound field of the 2:1 aspect ratio rectangular jet was very nearly 
axisymmetric, but the 4:1 and 8:1 were not, the noise on their minor axes being louder than the major axes. Adding 
bevel length increased the noise of these nozzles, especially on their minor axes, both toward the long and short sides of 
the beveled nozzle. Chevrons were only added to the 2:1 rectangular jet. Adding 4 chevrons per wide side produced 
some decrease at aft angles, but increased the high frequency noise at right angles to the jet flow. This trend increased 
with increasing chevron penetration. Doubling the number of chevrons while maintaining their penetration decreased 
these effects. Empirical models of the parametric effect of these nozzles were constructed and quantify the trends stated 
above."

•! Because it is the objective of the Supersonics Project that future design work be done more by physics-based 
computations and less by experiments, several codes under development were evaluated against these test cases. 
Preliminary results show that the RANS-based code JeNo predicts the spectral directivity of the low aspect ratio jets 
well, but has no capability to predict the non-axisymmetry. An effort to address this limitations, used in the RANS-based 
code of Leib and Goldstein, overpredicted the impact of aspect ratio. The broadband shock noise code RISN, also 
limited to axisymmetric assumptions, did a good job of predicting the spectral directivity of underexpanded 2:1 cold jet 
case but was not as successful on high aspect ratio jets, particularly when they are hot. All results are preliminary 
because the underlying CFD has not been validated yet. An effort using a Large Eddy Simulation code by Stanford 
University predicted noise that agreed with experiments to within a few dB."
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Outline!

•! Motivation / Previous work"
•! Design of nozzle configurations"
•! Sample acoustic test results"
•! Empirical modeling for trends and systems studies"
•! RANS-based noise predictions"
•! LES noise predictions"
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Motivation!
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•! Highly embedded propulsion systems, such as may be required for low sonic 
boom, often employ high aspect ratio nozzles and aft decks"

•! Highly variable cycle nozzles can be implemented with fewer moving parts in a 
2D geometry"

•! Database and design tools for jet noise for such configurations nonexistent"
•! Jet noise prediction tools assume axisymmetry and no surfaces"



Previous work!

•! GE CR&D (1970s)"
–! 6:1 rectangular nozzle, cold and hot subsonic cases"
–! Found suppression of OAPWL relative to round jet"
–! Found up to 2dB azimuthal dependence, esp high frequencies"
–! Peak jet noise reduced, some high frequency increase, esp minor axis"

•! GTRI (2002-2004) "
–! 1.5:1, 4:1, 8:1 rectangular nozzles, subsonic cases"
–! Showed variation of noise with aspect ratio"
–! Peak jet noise reduced by 6dB, high frequencies reduced as well"
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Design—Internal Flow and External Features!

•! Challenge: "
–! Create multiple high-aspect-ratio nozzles with common parts. "
–! Flow at exit uniform. "
–! Short length to minimize weight. "
–! Handle hot flow."
–! Aspect ratios 2:1, 4:1, 8:1"

•! Mount to small hot jet rig  (SHJAR) and to twin jet rig —> 2.13” De"
•! Once clean transitions designed, shift focus to external flow and external 

features"
–! Bevels, with and without sidewalls"
–! Chevrons"
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Design—Test plans!
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Facilities!

•! NASA Glenn Research Center"
•! Small Hot Jet Acoustic Rig (SHJAR)"
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Sample far-field acoustic test results!

•! Nomenclature"
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Aspect Ratio—OASPL!

•! Colored lines for different azimuthal planes"
•! Black line for round jet "
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Aspect Ratio—SPL!
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•! Colored lines for different azimuthal planes"
•! Black line for round jet "

90° 120° 150° 

M=0.96, cold 

Polar 

4:1 



Bevel Length—OASPL!

•! Colored lines for different azimuthal planes"
•! Black line for round jet "
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Bevel Length—SPL!

•! Colored lines for different azimuthal planes"
•! Black line for round jet "
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Bevel Length—phased array!

•! Insight:"
–! Increasing bevel length introduces new source at sidewall"
–! Visible from both upper and lower sides"
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Chevrons—OASPL!

•! Colored lines for different azimuthal planes"
•! Black line for round jet "

15 

M=0.96, cold 
2:1 

N=4 
P=0.05” 

N=8 
P=0.05” 

N=4 
P=0.1” 

Polar angle Polar angle Polar angle 



Chevrons—SPL!

•! Colored lines for different azimuthal planes"
•! Black line for round jet "
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Chevrons—phased array!

•! Insight:"
–! Sources brought close to nozzle exit"
–! For 2:1, view factor not important—no azimuthal dependence"
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Parametric Modeling—Description!

•! Simple parametric models of the impact of various geometric features created"
•! Aspect Ratio and Bevel Length:"

–! PSD = power spectral density in dB"
–! PSD0 = power spectral density of round jet"
–! AR = Aspect ratio "
–! L/h = bevel length relative to nozzle height"
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PSD(AR,L /h; f ,",#)
= PSD0( f ,")
+ AR*a( f ,",#)
+ L /h *b( f ,",#)
+ AR*L /h *c( f ,",#)



Parametric Modeling—Aspect Ratio!

•! Bilinear model fitted to 3 aspect ratios x 3 bevel lengths each"
•! Linear coefficient for aspect ratio depicts basic sensitivities"
•! Surface shape is spectral directivity, color is aspect ratio coefficient"
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Parametric Modeling—Bevel Length!

•! Bilinear model fitted to 3 aspect ratios x 3 bevel lengths each"
•! Linear coefficient for bevel length depicts basic sensitivities"
•! Surface shape is spectral directivity, color is bevel length coefficient"
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RANS-based noise prediction—CFD!

•! All RANS-based noise predictions made with WindUS solutions"
•! Typical runs required 30M grid points on bi-symmetric fine grid"
•! Used SST turbulence model"
•! Stringent grid refinement and convergence criteria placed on TKE"
•! Thrust and flow angularity evaluated"
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RANS-based noise prediction—JeNo!

•! Uses axisymmetric approximation of jet mixing noise"
•! Until turbulent enthalpy code validated in Wind, JeNo limited to cold flows"
•! Predicted spectral levels within 2 dB for subsonic cold jets, most polar angles"
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2:1 M=0.96, cold 



RANS-based noise prediction—JeNo!

•! JeNo used in evaluation of chevron designs for noise"
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RANS-based noise prediction—Leib!

•! In acoustic analogy theory, refraction computed by Green#s function"
•! Elliptic approximation to Green#s function for prediction of nonaxisymmetric  

mixing noise"
•! Uses Goldstein-Leib formulation for mixing noise source terms"
•! Limited to cold flows at this time"
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Prediction of azimuthal dependence of 
noise spectra for 4:1 rectangular jet at 
polar angle 120°—Data vs Leib 
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RANS-based noise prediction—RISN!

•! Axisymmetric approximation of broadband shock noise computed from RANS 
CFD input"

•! No prediction of screech or amplification of BBSN by screech"
•! Blind comparison with M=1.23 hot 2:1 rectangular jet"
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polar = 60° polar = 90° 



RANS-based noise prediction—RISN!

•! Prediction of three-dimensional directivity of BBSN still a challenge"

26 

!"#$%&'()

*'
+%&

,-
)

!"#$ !"#! !"" !"!
%"

%&

!""

!"&

!!"

!!&

!$"

% %
% %

%

%

!"#$%&'()

*'
+%&

,-
)

!"#$ !"#! !"" !"!
%"

%&

!""

!"&

!!"

!!&

!$"

% %
% %

%

%

!"#$%&'()

*'
+%&

,-
)

!"#$ !"#! !"" !"!
%"

%&

!""

!"&

!!"

!!&

!$"

% %
% %

%

%

!"#$%&'()

*'
+%&

,-
)

!"#$ !"#! !"" !"!
%"

%&

!""

!"&

!!"

!!&

!$"

% %
% %

%

%

polar = 50° 

polar = 70° 

polar = 90° 

polar = 110° 

4:1 rectangular jet 
M=1.4, isothermal 



•! Stanford University has make LES-based predictions of far-field noise from 4:1 
rectangular nozzle at hot supersonic flow condition."

•! Very preliminary comparisons show remarkable agreement with data."
•! More detailed comparisons underway"

LES noise prediction—OASPL!
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LES noise prediction—far-field spectra!

•! Blind comparisons of LES and ERN11 data"
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Summary/Status!

•! An initial set of high aspect ratio nozzles incorporating features common to 
embedded propulsion concepts has been designed and tested for far-field noise 
over a broad range of flow conditions."

•! Simple parametric models have been constructed which capture trends over 
range of parameters tested."

•! Shifts in distribution of noise sources"
–! lower peak jet noise in the aft arc with increased aspect ratio, increased bevel length, 

and introduction of chevrons"
–! Increase high frequency noise at broadside angles with same parametric variations."
–! result in increased EPNL by a few EPNdB for most subsonic configurations"

•! Phased array results show sources related to key nozzle features"
•! Empirical models of all possible parametric variations not feasible"
•! RANS-based prediction methods "

–! Lack non-axisymmetric propagation ability"
–! Lack hot flow CFD input for accurate source strength prediction"
–! These aspects will be worked in coming years"

•! LES prediction accurate within few dB, at substantial cost."
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